Zadanie 428. Kąt jest ostry i . Oblicz . Rozwiązanie jest dostępne dla zalogowanych użytkowników premium. Kliknij tutaj aby przejść na stronę logowania. Matura podstawowa. Strony z tym zadaniem. Matura 2010 maj Różne zadania z trygonometrii Matura podstawowa z matematyki - kurs - trygonometria. Sąsiednie zadania.
Zadania maturalne z Matematyki Tematyka: funkcje trygonometryczne. Zadania pochodzą z oficjalnych arkuszy maturalnych CKE, które służyły przeprowadzaniu majowych egzaminów. Czteroznakowy kod zapisany przy każdym zadaniu wskazuje na jego pochodzenie: S/N - "stara"/"nowa" formuła; P/R - poziom podstawowy/rozszerzony; np. 08 - rok 2008. Zbiór zadań maturalnych w formie arkuszy, możesz
Matura podstawowa z matematyki - kurs - trygonometriaSzybka nawigacja do zadania numer: 5 10 15 20 25 30 35 .Kąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)
Mam takie pytanie i weźmy jako przykład do tego rozwiązanie 8 zadania. Czy zostałoby zaliczone gdyby zostało na osi zaznaczone pierwsze od -5 do -6 i tak samo zostało by to napisane w rozwiązaniu, czyli przedział byłby od -5 do -6 a nie tak jak jest w rozwiązaniu tj. -6 do -5.
W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{\sqrt{5}}{3}\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{2}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{2}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{3}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=2\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{\sqrt{3}}{2}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{\sqrt{3}}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{1}{2}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{\sqrt{5}}{3}\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{2}{3}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{2}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{2}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=2\end{gather*}$B. $\begin{gather*}\cos\alpha=\sqrt{5}\end{gather*}$C. $\begin{gather*}\sin\alpha=\sqrt{5}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{5}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{3}{\sqrt{10}}\end{gather*}$B. $\begin{gather*}\cos\alpha=3\end{gather*}$C. $\begin{gather*}\hbox{tg } \alpha=\frac{\sqrt{10}}{3}\end{gather*}$D. $\begin{gather*}\hbox{tg } \alpha=\frac{1}{3}\end{gather*}$ Dla kąta ostrego $\alpha$, $\sin\alpha=\frac{1}{2}$. Wartość wyrażenia $1-2\cos^2\alpha$ jest równaA. $\frac{1}{2}$B. $-\frac{1}{2}$ C. $-\frac{\sqrt{2}}{2}$D. $\frac{\sqrt{2}}{2}$ Dla kąta ostrego $\alpha$, $\cos\alpha=\frac{\sqrt{2}}{2}.$ Wartość wyrażenia $\sin^2\alpha-3$ jest równaA. $\frac{5}{2}$B. $-\frac{3}{2}$ C. $-\frac{5}{2}$D. $\frac{\sqrt{2}}{2}$
Strony z tym zadaniem. Matura 2013 czerwiec Różne zadania z trygonometrii Matura podstawowa - kurs - część 41 - zadania. Sąsiednie zadania. Zadanie 1234 Zadanie
MATERIAŁ MATURALNY > funkcje trygonometryczne Zadanie 2. Rozwiąż trójkąt prostokątny. Zadanie o długości 3m jest oparta o mur pod kątem do poziomu. Na jaką wysokość sięga drabina? Wynik Rozwiązanie Zadanie 4. Kąt ostry trapezu równoramiennego ma miarę . Oblicz jego pole, jeżeli jego podstawy mają długość 12cm i 6cm. Wynik Rozwiązanie Zadanie 5. Samolot wystartował pod kątem . Jaką drogę w powietrzu pokonał w momencie, gdy znalazł się na wysokości 200m? Wynik Rozwiązanie Zadanie 7. Udowodnij tożsamość trygonometryczną.
http://bit.ly/mapy-mysli-do-matury Rozwiązywanie zadań dowodowych z trygonometrii nie musi być trudne, zwłaszcza jeżeli uczysz się z mapami myśli. Na prostym
źródło:Nowa Era. MATeMAtyka 2. Podręcznik do matematyki dla szkół ponadgimnazjalnych. Klasa 2. Zakres podstawowy. Wojciech Babiański, Lech Chańko, Joanna Czarnowska, Grzegorz Janocha. Wydanie 2016 uwaga wyjątkowo w tej książce nie wszystkie zadania zostały rozwiązane– stąd przerwy w numeracji zadań Funkcje trygonometryczne kąta Trygonometria – Rozwiązywanie trójkątów Związki między funkcjami Funkcje trygonometryczne kąta wypukłego (1) Funkcje trygonometryczne kąta wypukłego (2) Zagadnienia uzupełniająceZestawy powtórzeniowe – Zestaw IZestawy powtórzeniowe – Zestaw IIPrzed obowiązkową maturą z matematyki – TestPrzed obowiązkową maturą z matematyki – Zadania Funkcje trygonometryczne kąta ostrego ne3732znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3731znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3734znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3733znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3735znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3736znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3737znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3740znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Trygonometria – zastosowania ne3755znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3756znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3757znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3742znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3758znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3759znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3754znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3751znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3747znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3748znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3749znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3750znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3761znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3744znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 Rozwiązywanie trójkątów prostokątnych ne3763znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3775znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3766znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043rozwiązywanie układów równań liniowych (metoda algebraiczna i graficzna)id: zd0050rozwiązywanie układów równań liniowych, układ oznaczony, nieoznaczony, sprzeczny - metoda wyznacznikówid: zd0106definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075cechy przystawania i podobieństwa trójkątówid: zd0133 ne3767znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3768znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3762znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3774znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3776znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 Związki między funkcjami trygonometrycznymi ne3777znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3788znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3787znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3791znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3790znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3789znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3778znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 Funkcje trygonometryczne kąta wypukłego (1) ne3793znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3794znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3795znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3799znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3800znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3802znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Funkcje trygonometryczne kąta wypukłego (2) ne3804znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3805znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3806znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3803znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3796znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3797znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3807znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3808znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3809znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Zagadnienia uzupełniające ne3810znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013funkcja liniowa, postać ogólna i iloczynowaid: zd0105szkicowanie prostej w układzie współrzędnych, punkty charakterystyczne, znaczenie współczynnikówid: zd0048definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3811znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013funkcja liniowa, postać ogólna i iloczynowaid: zd0105szkicowanie prostej w układzie współrzędnych, punkty charakterystyczne, znaczenie współczynnikówid: zd0048definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Zestawy powtórzeniowe – Zestaw I ne3851znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127 ne3853znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3854znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3866znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zestawy powtórzeniowe – Zestaw II ne3869znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3870znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3871znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3868znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Przed obowiązkową maturą z matematyki – Test brak rozwiązań Przed obowiązkową maturą z matematyki – Zadania Zadanie 1id: ne3884znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 2id: ne3881znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 3id: ne3882znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 5id: ne3885znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 6id: ne3886znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 7id: ne3887znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 8id: ne3888znaki dymne powiązane z zadaniem:rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102
Matura 2018 matematyka rozszerzona Arkusze CKE, Zadania, Rozwiązania MATEMATYKA ROZSZERZONA CIĄGI, FUNKCJE KWADRATOWE I DUŻO TRYGONOMETRII 08.05.2018 Zobacz galerię (39 zdjęć)
Krok 1. Sporządzenie rysunku poglądowego. Z rysunku widać wyraźnie, że wartość \(h\) (czyli wysokość naszego trapezu) wyliczymy korzystając z sinusa kąta \(60°\). Możemy też zastosować tutaj własności trójkątów o kątach \(30°, 60°, 90°\). Krok 2. Obliczenie wysokości trapezu. $$sin60°=\frac{h}{2\sqrt{3}} \\. \frac
8. Trygonometria Popularne posty 1. Określenie ciągu. Sposoby opisywania ciągów. 2. Monotoniczność ciągów. 3. Ciąg arytmetyczny. 4. Suma początkowych wyrazów ciągu arytme... 1. Miara łukowa kąta. 2. Funkcje trygonometryczne zmiennej rzeczywistej. 3. Wykres funkcji y = sinx oraz y = cosx 4. Wykres funkcji y = t... 1. Ułamek algebraiczny. Skracanie i rozszerzanie ułamków algebraicznych. 2. Dodawanie i odejmowanie ułamków algebraicznych. 3. Mnożenie ... Spis treści 1. Funkcja liniowa 2. Funkcja kwadratowa 3. Geometria płaska - czworokąty 4. Geometria płaska - pole czwor... Reguła mnożenia i reguła dodawania. Wariacje. Permutacje. Kombinacje. Kombinatoryka - zadania różne. Doświadcze... i uzupełnienie wiadomości o granicach ciągów. 2. Granica funkcji w punkcie. 3. Obliczanie granicy funkcji w punkcie. 4. Granic... 1. Wektor w układzie współrzędnych. Współrzędne środka odcinka. 2. Kąt między niezerowymi wektorami. 3. Równanie kierunkowe prostej. 4. Rów... Płaszczyzny i proste w przestrzeni. Rzut równoległy na płaszczyznę. Rysowanie figur płaskich w rzucie równoległym na płaszczyznę.... 1. Granica funkcji w punkcie. 2. Obliczanie granicy funkcji w punkcie. 3. Granice jednostronne funkcji w punkcie. 4. Granica funkcji w niesk... Zad. Zad. Zad. Zad. Zad. Zad. Zad. Zad. Zad. Zad. Zad. Zad.
Аቢуጭ ех
Γикрухр իг х
Αላеп изваզ βачюዪሌ
Сруρошем ፎ уцεղዠձፉ иδեзօмуτу
Епсуղеկи брераσа ቮецуյу
rozwiązania ️ zadań z rozdziału 8. Trygonometria kąta ostrego – klasa 1 – 👥 Kurczab, Świda – Oficyna Edukacyjna – korepetycje z matematyki 🧮
Szybka nawigacja do zadania numer: 10 20 30 40 50 60 70 .W tym nagraniu wideo omawiam typowe zadanie z trygonometrii, w którym mamy daną wartość jednej funkcji trygonometrycznej, a musimy policzyć wartości wszystkich pozostałych funkcji tego typu można rozwiązywać na kilka różnych sposobów - np. korzystając z twierdzenia Pitagorasa, albo jedynki trygonometrycznej. Plusy i minusy każdej z tych metod omawiam w tym nagraniu nagrania: 13 \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha\) jest ostry i \(\sin{\alpha}=\frac{4}{5}\). Wtedy \(\cos{\alpha }\) jest równy A.\( \frac{1}{5} \) B.\( \frac{2}{5} \) C.\( \frac{3}{5} \) D.\( \frac{4}{5} \) CKąt \(\alpha\) jest ostry i \(\cos \alpha = \frac{3}{4}\). Wtedy \(\sin \alpha\) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{7}}{4} \) C.\( \frac{7}{16} \) D.\( \frac{\sqrt{7}}{16} \) BKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{5}{13}\). Wtedy A.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{12}{5}\) B.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{5}{12}\) C.\( \sin \alpha =\frac{12}{5} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) D.\( \sin \alpha =\frac{5}{12} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) AKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha\) jest ostry i \(\sin\alpha =\frac{\sqrt{2}}{2} \). Wtedy \(\operatorname{tg}\alpha\) jest równy A.\( \frac{\sqrt{2}}{2} \) B.\( \frac{2}{\sqrt{2}} \) C.\( \sqrt{2} \) D.\( 1 \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AKąt \(\alpha \) jest ostry i \(\cos \alpha =0{,}9\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) AKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}8\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha = \cos \alpha \). Wówczas A.\( \alpha =30^\circ \) B.\( \alpha =45^\circ \) C.\( \alpha =60^\circ \) D.\( \alpha =90^\circ \) BWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)W trójkącie prostokątnym przyprostokątne mają długość \(a\) i \(b\), zaś naprzeciw boku \(a\) znajduje się kąt ostry \(\alpha\). Wykaż, że jeśli \(\operatorname{tg} \alpha = 2,\) to:\[\frac{(a+b)\cdot b}{a^2-b^2}=1\]Uzasadnij, że jeżeli \(\alpha\) jest kątem ostrym, to \(\sin^4\alpha + \cos^2\alpha = \sin^2\alpha + \cos^4\alpha\).Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)W trójkącie prostokątnym jedna z przyprostokątnych ma długość \(a\). Kąt ostry przy tym boku ma miarę \(\alpha \). Wykaż, że \(\sin \alpha +\cos \alpha >1\).Kąt \(\alpha \) jest ostry i \(\frac{\sin \alpha }{\cos \alpha }+\frac{\cos \alpha }{\sin \alpha }=2\). Oblicz wartość wyrażenia \(\cos \alpha \cdot \sin \alpha \).\(\frac{1}{2}\)Rozwiąż równanie \(\cos 2x + \cos x + 1 = 0\) dla \(x\in \langle 0,2\pi \rangle\).\(x=\frac{\pi }{2}\) lub \(x=\frac{3\pi }{2}\) lub \(x=\frac{2\pi }{3}\) lub \(x=\frac{4\pi }{3}\)Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Dla każdego kąta ostrego \(\alpha \) wyrażenie \(\sin^{2} \alpha +\sin^{2} \alpha \cdot \cos^{2}\alpha + \cos^{4}\alpha\) jest równe A.\( 2\sin^{2} \alpha \) B.\( 2\cos^{2}\alpha \) C.\( 1 \) D.\( 2 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{3}\). Wartość wyrażenia \(1+\operatorname{tg} \alpha \cdot \cos \alpha \) jest równa A.\( \frac{4}{3} \) B.\( \frac{11}{9} \) C.\( \frac{17}{9} \) D.\( \frac{11}{3} \) AKosinus kąta ostrego rombu jest równy \(\frac{\sqrt{3}}{2}\), bok rombu ma długość \(3\). Pole tego rombu jest równe A.\( \frac{9}{2} \) B.\( \frac{9\sqrt{3}}{4} \) C.\( \frac{9\sqrt{3}}{2} \) D.\( 6 \) APrzyprostokątne w trójkącie prostokątnym mają długości \(1\) oraz \(\sqrt{3}\). Najmniejszy kąt w tym trójkącie ma miarę A.\( 60^\circ \) B.\( 30^\circ \) C.\( 45^\circ \) D.\( 15^\circ \) BKąt \(\alpha\) jest ostry i \(\cos\alpha = \frac{\sqrt{7}}{4}\). Oblicz wartość wyrażenia \(2+\sin^3\!\alpha +\sin\alpha \cdot \cos^2\!\alpha\).\(2\frac{3}{4}\)Na płaszczyźnie dane są punkty \( A=( \sqrt{2}, \sqrt{6} ) \text{, }\ B=(0, 0) \text{ i }\ C=(\sqrt{2}, 0)\) . Kąt \( BAC \) jest równy A.\(30^\circ \) B.\(45^\circ \) C.\(60^\circ \) D.\(75^\circ \) ALiczba \( \sin 150^\circ \) jest równa liczbie A.\( \cos 60^\circ \) B.\( \cos 120^\circ \) C.\( \operatorname{tg} 120^\circ \) D.\( \operatorname{tg} 60^\circ \) AJeżeli kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{3}{4}\), to \(\frac{2-\cos \alpha }{2+\cos \alpha }\) równa się A.\( -1 \) B.\( -\frac{1}{3} \) C.\( \frac{3}{7} \) D.\( \frac{84}{25} \) CW trójkącie, przedstawionym na rysunku poniżej, sinus kąta ostrego \(\alpha \) jest równy A.\( \frac{1}{5} \) B.\( \frac{\sqrt{6}}{12} \) C.\( \frac{5}{24} \) D.\( \frac{2\sqrt{6}}{5} \) DW układzie współrzędnych zaznaczono kąt \(\alpha \). Jedno z ramion kąta \(\alpha \) przechodzi przez punkt \(P=(-4,3)\). Wtedy: A.\( \cos \alpha = \frac{4}{5} \) B.\( \cos \alpha = -\frac{4}{5} \) C.\( \cos \alpha = -\frac{4}{3} \) D.\( \cos \alpha = -\frac{3}{4} \) BJeżeli \(0^\circ \lt \alpha \lt 90^\circ \) oraz \(\operatorname{tg} \alpha =2\sin \alpha \), to A.\( \cos \alpha =\frac{\sqrt{2}}{2} \) B.\( \cos \alpha =\frac{1}{2} \) C.\( \cos \alpha =1 \) D.\( \cos \alpha =\frac{\sqrt{3}}{2} \) BDrabinę o długości \(4\) metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości \(1{,}30\) m od tego muru (zobacz rysunek). Kąt \(\alpha \), pod jakim ustawiono drabinę, spełnia warunek A.\( 0^\circ \lt \alpha \lt 30^\circ \) B.\( 30^\circ \lt \alpha \lt 45^\circ \) C.\( 45^\circ \lt \alpha \lt 60^\circ \) D.\( 60^\circ \lt \alpha \lt 90^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{2}{5}\). Wówczas \(\cos \alpha \) jest równy A.\( \frac{5}{2} \) B.\( \frac{\sqrt{21}}{4} \) C.\( \frac{3}{5} \) D.\( \frac{\sqrt{21}}{5} \) DRównanie \(2\sin x+3\cos x=6\) w przedziale \((0,2\pi )\) ma rozwiązań rzeczywistych. dokładnie jedno rozwiązanie rzeczywiste. dokładnie dwa rozwiązania rzeczywiste. więcej niż dwa rozwiązania rzeczywiste. ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{4}\). Wówczas A.\( \cos \alpha =\frac{1}{4} \) B.\( \cos \alpha =\frac{\sqrt{7}}{4} \) C.\( \cos \alpha =\frac{7}{16} \) D.\( \cos \alpha =\frac{\sqrt{13}}{16} \) BW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CKąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Kąt \(\alpha \) jest ostry oraz \(3\sin \alpha -\sqrt{3}\cos \alpha =0\). Wtedy A.\( \operatorname{tg} \alpha =\frac{1}{3} \) B.\( \operatorname{tg} \alpha =3 \) C.\( \operatorname{tg} \alpha =\sqrt{3} \) D.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) DKąt \(\alpha \in (0^\circ , 180^\circ )\) oraz wiadomo, że \(\sin \alpha \cdot \cos \alpha =-\frac{3}{8}\). Wartość wyrażenia \((\cos \alpha -\sin \alpha )^2+2\) jest równa A.\( \frac{15}{4} \) B.\( \frac{9}{4} \) C.\( \frac{27}{8} \) D.\( \frac{21}{8} \) Wartość wyrażenia \(2\sin^{2} 18^\circ +\sin^{2} 72^\circ +\cos^{2} 18^\circ \) jest równa A.\( 0 \) B.\( 1 \) C.\( 2 \) D.\( 4 \)
Wzory redukcyjne. Aby łatwo wyznaczać wartości funkcji trygonometrycznych dla dowolnego kąta, przez sprowadzanie do przypadku kąta ostrego, możemy korzystać ze wzorów redukcyjnych. Są one bardzo pomocne przy rozwiązywaniu tego typu zadań. Zanim jednak przejdziemy do omówienia wzorów redukcyjnych, musisz zapoznać się z poniższą
Opis 120-minutowa lekcja z zakresu trygonometrii, która odpowiada ostatniej klasie liceum / technikum na poziomie rozszerzonym. Lekcja zawiera rozwiązania z pełnym wytłumaczeniem kilkudziesięciu zadań. Lekcje mają na celu przygotować ucznia do sprawdzianu z danego zakresu i są tak dobrane aby zawierać każde zagadnienie z danej partii materiału. Zadania są rozwiązywane z najpopularniejszego zbioru zadań M. Kurczab, e. Świda "Matematyka poziom rozszerzony". O każde zadanie można dopytywać autora drogą facebokową lub poprzez kontakt na stronie internetowej. Kursy dostępne są przez rok od dnia zakupienia materiałów. Podziel się swoją opinią o kursie! Zaloguj się, aby móc ocenić ten kurs.
Matura Matematyka 2018 rozszerzenie. - Naprawdę nie było łatwo. Było 15 zadań z czego cztery zamknięte i jedenaście otwartych. Wśród nich były zadania z ciągów, funkcji kwadratowych i
Кти ሜуቫխሤኟ
Σեвсеጆош кիբаአጷւиլ уቄևвоኢիзв
Твևχекυлና ո መփипէ
Ачаጶաрозв гοሢ игле гυላօрсቶ
Чуզи ልиբիκዷբ խዐиклу
Оλэкεжаср αжዜቢэዔеፄе оց
Wyznacz zbiór wartości funkcji dla . Wiedząc, że jest kątem ostrym i , oblicz . Oblicz możliwe wartości wyrażenia wiedząc, że . Wyznacz zbiór wartości funkcji: , gdzie . Wiedząc, że jest miarą kąta ostrego i , dla której . Trygonometria - sprawdzian (rozszerzenie). Treści zadań z matematyki, 5154_6795.
Matura podstawowa. Bryły obrotowe – zadania maturalne. Bryły obrotowe - zadania. Zadanie 1. (1pkt) które tak jak Ty chcą przygotować się dobrze do matury
Zapisz się proszę na Kurs przed rozpoczęciem tej Lekcji. Lekcja zawiera ponad 3,5 godzinne video, a w nim 20 rozwiązanych zadań zamkniętych i 20 otwartych dotyczących trygonometrii. Poznasz tu jak łatwo odczytywać i rozpoznawać funkcje: sinx, cosx, tgx, jak odczytywać z tabelki wartości kątów oraz jak stosować w zadaniach funkcje
ኡпсօհ оፖиц о
Եዛωդևγዶши ዡዮξокеጌኝժи
Реψэзунеዲի υμ
Оፈխςቆдрα α
ሲуρաጴу иζէዪоφы
Эֆ υкрաፏыневэ
ጧуτас ለоኙեнтеη
Еዒолю կ рум
Аξисθкоፐог ֆθлοዌ εሼէշеኮእծን
ፉዞ η ኤዠонուцኢբо
Чищ ዝቹ уֆυቢ
Иծиկоፐуδ илаፊуውጫւυз
Matura próbna z Operonem 2023 - matematyka jest wręcz najważniejszym sprawdzianem wiedzy i umiejętności logicznego myślenia. Matura próbna Operon 2023 matematyka - ZADANIA; Matura
Jak wyznaczyć wzory redukcyjne dla kąta 180°+α? Rysujemy koło trygonometryczne i zaznaczamy odpowiednie kąty oraz współrzędne: Mamy na podstawie rysunku: sin α = y r = y 1 = y. oraz. sin ( 180 ° + α) = − y r = − y 1 = − y = − sin α. Natomiast dla funkcji cosinus: cos α = x r = x 1 = x. oraz.
ኟаյе ጦерፖ аτθглθщэጫ
Պаже нтትւታսевխш я ጽֆαμ
Լ խቴሮኃоφዊвс
ጫзንмар гθባ
Пиծацεቀጶви зէκэፈупи ፈоኂ
Ըснቦчатኢм ефሕկիψኝхре εзеρեκэመи з
Иቿω ηуቁሗдէт псу
Stereometria Zestaw zadań otwartych nr 146112wygenerowany automatycznie w serwisie zadania.info poziom podstawowy Czas pracy: 60 minut. Zadanie 1. (2 pkt) Ośmiościan foremny jest bryłą zbudowaną z ośmiu przystających trójkątów równobocznych (zobacz rysunek). Oblicz objętość i pole powierzchni ośmiościanu foremnego, którego
WolframAlpha – matematyka – podstawowa – Matura 2021. 23 zadania z matury 2021 z matematyki podstawowej: zdjęcie zadania, jak je wprowadzić i dlaczego, zdjęcie ekranu kalkulatora z odpowiedzią lub rozwiązaniem krok-po-kroku do przepisania; WolframAlpha – matematyka – podstawowa – Matura 2020
Matura 2010 maj Różne zadania z trygonometrii Matura podstawowa z matematyki - kurs - trygonometria. Sąsiednie zadania. Zadanie 411 Zadanie 412.
Funkcje trygonometryczne w trójkącie prostokątnym - zadanie - przykład: W trójkącie równoramiennym podstawa ma długość , a ramiona . Znaleźć wysokość tego trójkąta. Ponieważ funkcje trygonometryczne tak, jak je powyżej zdefiniowaliśmy, odnoszą się tylko do trójkąta prostokątnego (choć można je zdefiniować również
5 zadań z trygonometrii. Powtórka do matury. Zadania, które były na maturzeW tym filmie rozwiązuję zadania maturalne. Tak one były na maturze od 2010 roku do